Skip to content

openai

The OpenAI integration module provides support for the OpenAI API.

This module implements integration interfaces with OpenAI language models, supporting calls to large language models provided by OpenAI such as the GPT series, and provides several wrappers for advanced functionality.

You can install the OpenAI integration package for Bridgic by running:

pip install bridgic-llms-openai

OpenAIConfiguration

Bases: OpenAILikeConfiguration

Configuration for OpenAI chat completions.

Source code in bridgic/llms/openai/_openai_llm.py
class OpenAIConfiguration(OpenAILikeConfiguration):
    """
    Configuration for OpenAI chat completions.
    """
    pass

OpenAILlm

Bases: BaseLlm, StructuredOutput, ToolSelection

Wrapper class for OpenAI, providing common chat and stream calling interfaces for OpenAI model and implementing the common protocols in the Bridgic framework.

Parameters:

Name Type Description Default
api_key str

The API key for OpenAI services. Required for authentication.

required
api_base Optional[str]

The base URL for the OpenAI API. If None, uses the default OpenAI endpoint.

None
configuration Optional[OpenAIConfiguration]

The configuration for the OpenAI API. If None, uses the default configuration.

OpenAIConfiguration()
timeout Optional[float]

Request timeout in seconds. If None, no timeout is applied.

None
http_client Optional[Client]

Custom synchronous HTTP client for requests. If None, creates a default client.

None
http_async_client Optional[AsyncClient]

Custom asynchronous HTTP client for requests. If None, creates a default client.

None

Examples:

Basic usage for chat completion:

1
2
3
llm = OpenAILlm(api_key="your-api-key")
messages = [Message.from_text("Hello!", role=Role.USER)]
response = llm.chat(messages=messages, model="gpt-4")

Structured output with Pydantic model:

class Answer(BaseModel):
    reasoning: str
    result: int

constraint = PydanticModel(model=Answer)
structured_response = llm.structured_output(
    messages=messages,
    constraint=constraint,
    model="gpt-4"
)

Tool calling:

tools = [Tool(name="calculator", description="Calculate math", parameters={})]
tool_calls, tool_call_response = llm.select_tool(messages=messages, tools=tools, model="gpt-4")
Source code in bridgic/llms/openai/_openai_llm.py
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
class OpenAILlm(BaseLlm, StructuredOutput, ToolSelection):
    """
    Wrapper class for OpenAI, providing common chat and stream calling interfaces for OpenAI model
    and implementing the common protocols in the Bridgic framework.

    Parameters
    ----------
    api_key : str
        The API key for OpenAI services. Required for authentication.
    api_base : Optional[str]
        The base URL for the OpenAI API. If None, uses the default OpenAI endpoint.
    configuration : Optional[OpenAIConfiguration]
        The configuration for the OpenAI API. If None, uses the default configuration.
    timeout : Optional[float]
        Request timeout in seconds. If None, no timeout is applied.
    http_client : Optional[httpx.Client]
        Custom synchronous HTTP client for requests. If None, creates a default client.
    http_async_client : Optional[httpx.AsyncClient]
        Custom asynchronous HTTP client for requests. If None, creates a default client.

    Examples
    --------
    Basic usage for chat completion:

    ```python
    llm = OpenAILlm(api_key="your-api-key")
    messages = [Message.from_text("Hello!", role=Role.USER)]
    response = llm.chat(messages=messages, model="gpt-4")
    ```

    Structured output with Pydantic model:

    ```python
    class Answer(BaseModel):
        reasoning: str
        result: int

    constraint = PydanticModel(model=Answer)
    structured_response = llm.structured_output(
        messages=messages,
        constraint=constraint,
        model="gpt-4"
    )
    ```

    Tool calling:

    ```python
    tools = [Tool(name="calculator", description="Calculate math", parameters={})]
    tool_calls, tool_call_response = llm.select_tool(messages=messages, tools=tools, model="gpt-4")
    ```
    """

    api_base: str
    api_key: str
    configuration: OpenAIConfiguration
    timeout: float
    http_client: httpx.Client
    http_async_client: httpx.AsyncClient

    client: OpenAI
    async_client: AsyncOpenAI

    def __init__(
        self,
        api_key: str,
        api_base: Optional[str] = None,
        configuration: Optional[OpenAIConfiguration] = OpenAIConfiguration(),
        timeout: Optional[float] = None,
        http_client: Optional[httpx.Client] = None,
        http_async_client: Optional[httpx.AsyncClient] = None,
    ):
        """
        Initialize the OpenAI LLM client with configuration parameters.

        Parameters
        ----------
        api_key : str
            The API key for OpenAI services. Required for authentication.
        api_base : Optional[str]
            The base URL for the OpenAI API. If None, uses the default OpenAI endpoint.
        configuration : Optional[OpenAIConfiguration]
            The configuration for the OpenAI API. If None, uses the default configuration.
        timeout : Optional[float]
            Request timeout in seconds. If None, no timeout is applied.
        http_client : Optional[httpx.Client]
            Custom synchronous HTTP client for requests. If None, creates a default client.
        http_async_client : Optional[httpx.AsyncClient]
            Custom asynchronous HTTP client for requests. If None, creates a default client.
        """
        # Record for serialization / deserialization.
        self.api_base = api_base
        self.api_key = api_key
        self.configuration = configuration
        self.timeout = timeout
        self.http_client = http_client
        self.http_async_client = http_async_client

        # Initialize clients.
        self.client = OpenAI(base_url=api_base, api_key=api_key, timeout=timeout, http_client=http_client)
        self.async_client = AsyncOpenAI(base_url=api_base, api_key=api_key, timeout=timeout, http_client=http_async_client)

    def chat(
        self,
        messages: List[Message],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        max_tokens: Optional[int] = None,
        stop: Optional[List[str]] = None,
        tools: Optional[List[Tool]] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Response:
        """
        Send a synchronous chat completion request to OpenAI.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        model : str
            Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        max_tokens : Optional[int]
            The maximum number of tokens that can be generated in the chat completion.
            This value is now deprecated in favor of `max_completion_tokens`.
        stop : Optional[List[str]]
            Up to 4 sequences where the API will stop generating further tokens.
            Not supported with latest reasoning models `o3` and `o3-mini`.
        tools : Optional[List[Tool]]
            A list of tools to use in the chat completion.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        Response
            A response object containing the generated message and raw API response.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            max_tokens=max_tokens,
            stop=stop,
            extra_body=extra_body,
            **kwargs,
        )
        # Validate required parameters for non-streaming chat completion
        validate_required_params(params, ["messages", "model"])

        response: ChatCompletion = self.client.chat.completions.create(**params)
        return self._handle_chat_response(response)

    def stream(
        self,
        messages: List[Message],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        max_tokens: Optional[int] = None,
        stop: Optional[List[str]] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> StreamResponse:
        """
        Send a streaming chat completion request to OpenAI.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        model : str
            Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        max_tokens : Optional[int]
            The maximum number of tokens that can be generated in the chat completion.
            This value is now deprecated in favor of `max_completion_tokens`.
        stop : Optional[List[str]]
            Up to 4 sequences where the API will stop generating further tokens.
            Not supported with latest reasoning models `o3` and `o3-mini`.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Yields
        ------
        MessageChunk
            Individual chunks of the response as they are received from the API.
            Each chunk contains a delta (partial content) and the raw response.

        Notes
        -----
        This method enables real-time streaming of the model's response,
        useful for providing incremental updates to users as the response is generated.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            max_tokens=max_tokens,
            stop=stop,
            extra_body=extra_body,
            stream=True,
            **kwargs,
        )
        # Validate required parameters for streaming chat completion
        validate_required_params(params, ["messages", "model", "stream"])

        response: Stream[ChatCompletionChunk] = self.client.chat.completions.create(**params)
        for chunk in response:
            if chunk.choices and chunk.choices[0].delta.content:
                delta_content = chunk.choices[0].delta.content
                delta_content = delta_content if delta_content else ""
                yield MessageChunk(delta=delta_content, raw=chunk)

    async def achat(
        self,
        messages: List[Message],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        max_tokens: Optional[int] = None,
        stop: Optional[List[str]] = None,
        tools: Optional[List[Tool]] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Response:
        """
        Send an asynchronous chat completion request to OpenAI.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        model : str
            Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        max_tokens : Optional[int]
            The maximum number of tokens that can be generated in the chat completion.
            This value is now deprecated in favor of `max_completion_tokens`.
        stop : Optional[List[str]]
            Up to 4 sequences where the API will stop generating further tokens.
            Not supported with latest reasoning models `o3` and `o3-mini`.
        tools : Optional[List[Tool]]
            A list of tools to use in the chat completion.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        Response
            A response object containing the generated message and raw API response.

        Notes
        -----
        This is the asynchronous version of the chat method, suitable for
        concurrent processing and non-blocking I/O operations.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            max_tokens=max_tokens,
            stop=stop,
            extra_body=extra_body,
            **kwargs,
        )
        # Validate required parameters for non-streaming chat completion
        validate_required_params(params, ["messages", "model"])

        response = await self.async_client.chat.completions.create(**params)
        return self._handle_chat_response(response)

    async def astream(
        self,
        messages: List[Message],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        max_tokens: Optional[int] = None,
        stop: Optional[List[str]] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> AsyncStreamResponse:
        """
        Send an asynchronous streaming chat completion request to OpenAI.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        model : str
            Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        max_tokens : Optional[int]
            The maximum number of tokens that can be generated in the chat completion.
            This value is now deprecated in favor of `max_completion_tokens`.
        stop : Optional[List[str]]
            Up to 4 sequences where the API will stop generating further tokens.
            Not supported with latest reasoning models `o3` and `o3-mini`.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Yields
        ------
        MessageChunk
            Individual chunks of the response as they are received from the API.
            Each chunk contains a delta (partial content) and the raw response.

        Notes
        -----
        This is the asynchronous version of the stream method, suitable for
        concurrent processing and non-blocking streaming operations.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            max_tokens=max_tokens,
            stop=stop,
            extra_body=extra_body,
            stream=True,
            **kwargs,
        )
        # Validate required parameters for streaming chat completion
        validate_required_params(params, ["messages", "model", "stream"])

        response = await self.async_client.chat.completions.create(**params)
        async for chunk in response:
            if chunk.choices and chunk.choices[0].delta.content:
                delta_content = chunk.choices[0].delta.content
                delta_content = delta_content if delta_content else ""
                yield MessageChunk(delta=delta_content, raw=chunk)

    def _build_parameters(
        self,
        messages: List[Message],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        max_tokens: Optional[int] = None,
        stop: Optional[List[str]] = None,
        tools: Optional[List[Tool]] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        stream: Optional[bool] = None,
        response_format: Optional[Dict[str, Any]] = None,
        tool_choice: Optional[ChatCompletionToolChoiceOptionParam] = None,
        parallel_tool_calls: Optional[bool] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        msgs: List[ChatCompletionMessageParam] = [self._convert_chat_completions_message(msg) for msg in messages]

        # Handle tools parameter - convert to list if provided, otherwise use empty list
        json_desc_tools = [self._convert_tool_to_json(tool) for tool in tools] if tools is not None else None

        # Build parameters dictionary and filter out None values
        # The priority order is as follows: configuration passed through the interface > configuration of the instance itself.
        merge_params = merge_dict(self.configuration.model_dump(), {
            "messages": msgs,
            "model": model,
            "temperature": temperature,
            "top_p": top_p,
            "presence_penalty": presence_penalty,
            "frequency_penalty": frequency_penalty,
            "max_tokens": max_tokens,
            "stop": stop,
            "tools": json_desc_tools,
            "extra_body": extra_body,
            "stream": stream,
            "response_format": response_format,
            "tool_choice": tool_choice,
            "parallel_tool_calls": parallel_tool_calls,
            **kwargs,
        })

        params = filter_dict(merge_params, exclude_none=True)
        return params

    def _handle_chat_response(self, response: ChatCompletion) -> Response:
        openai_message = response.choices[0].message
        text = openai_message.content if openai_message.content else ""

        if openai_message.refusal:
            warnings.warn(openai_message.refusal, RuntimeWarning)

        # Handle tool calls in the response
        # if openai_message.tool_calls:
        #     # Create a message with both text content and tool calls
        #     blocks = []
        #     if text:
        #         blocks.append(TextBlock(text=text))
        #     else:
        #         # Ensure there's always some text content, even if empty
        #         blocks.append(TextBlock(text=""))

        #     for tool_call in openai_message.tool_calls:
        #         tool_call_block = ToolCallBlock(
        #             id=tool_call.id,
        #             name=tool_call.function.name,
        #             arguments=json.loads(tool_call.function.arguments)
        #         )
        #         blocks.append(tool_call_block)

        #     message = Message(role=Role.AI, blocks=blocks)
        # else:
        #     # Regular text response
        #     message = Message.from_text(text, role=Role.AI)

        return Response(
            message=Message.from_text(text, role=Role.AI),
            raw=response,
        )

    def _convert_chat_completions_message(self, message: Message) -> ChatCompletionMessageParam:
        """
        Convert a Bridgic Message to OpenAI ChatCompletionMessageParam.

        This method handles different message types including:
        - Text messages
        - Messages with tool calls (ToolCallBlock)
        - Messages with tool results (ToolResultBlock)

        Parameters
        ----
        message : Message
            The Bridgic message to convert

        Returns
        ----
        ChatCompletionMessageParam
            The converted OpenAI message parameter
        """
        # Extract text content from TextBlocks and ToolResultBlocks
        content_list = []
        for block in message.blocks:
            if isinstance(block, TextBlock):
                content_list.append(block.text)
            elif isinstance(block, ToolResultBlock):
                content_list.append(block.content)
        content_txt = "\n\n".join(content_list) if content_list else ""

        # Extract tool calls from ToolCallBlocks
        tool_calls = []
        for block in message.blocks:
            if isinstance(block, ToolCallBlock):
                tool_call = ChatCompletionMessageToolCallParam(
                    id=block.id,
                    type="function",
                    function=Function(
                        name=block.name,
                        arguments=json.dumps(block.arguments)
                    )
                )
                tool_calls.append(tool_call)

        # Handle different message roles
        if message.role == Role.SYSTEM:
            return ChatCompletionSystemMessageParam(content=content_txt, role="system", **message.extras)
        elif message.role == Role.USER:
            return ChatCompletionUserMessageParam(content=content_txt, role="user", **message.extras)
        elif message.role == Role.AI:
            # For AI messages, include tool calls if present
            if tool_calls:
                return ChatCompletionAssistantMessageParam(
                    content=content_txt, 
                    role="assistant", 
                    tool_calls=tool_calls,
                    **message.extras
                )
            else:
                return ChatCompletionAssistantMessageParam(content=content_txt, role="assistant", **message.extras)
        elif message.role == Role.TOOL:
            # For tool messages, extract tool_call_id from ToolResultBlock
            tool_call_id = None
            for block in message.blocks:
                if isinstance(block, ToolResultBlock):
                    tool_call_id = block.id
                    break

            if tool_call_id is None:
                raise ValueError("Tool message must contain a ToolResultBlock with an ID")

            return ChatCompletionToolMessageParam(
                content=content_txt, 
                role="tool", 
                tool_call_id=tool_call_id,
                **message.extras
            )
        else:
            raise ValueError(f"Invalid role: {message.role}")

    @overload
    def structured_output(
        self,
        messages: List[Message],
        constraint: PydanticModel,
        model: Optional[str] = None,
        temperature: Optional[float] = ...,
        top_p: Optional[float] = ...,
        presence_penalty: Optional[float] = ...,
        frequency_penalty: Optional[float] = ...,
        extra_body: Optional[Dict[str, Any]] = ...,
        **kwargs,
    ) -> BaseModel: ...

    @overload
    def structured_output(
        self,
        messages: List[Message],
        constraint: JsonSchema,
        model: Optional[str] = None,
        temperature: Optional[float] = ...,
        top_p: Optional[float] = ...,
        presence_penalty: Optional[float] = ...,
        frequency_penalty: Optional[float] = ...,
        extra_body: Optional[Dict[str, Any]] = ...,
        **kwargs,
    ) -> Dict[str, Any]: ...


    def structured_output(
        self,
        messages: List[Message],
        constraint: Union[PydanticModel, JsonSchema],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Union[BaseModel, Dict[str, Any]]:
        """
        Generate structured output in a specified format using OpenAI's structured output API.

        This method leverages OpenAI's structured output capabilities to ensure the model
        response conforms to a specified schema. Recommended for use with GPT-4o and later models.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        constraint : Constraint
            The constraint defining the desired output format (PydanticModel or JsonSchema).
        model : str
            Model ID used to generate the response. Structured outputs work best with GPT-4o and later.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        Union[BaseModel, Dict[str, Any]]
            The structured response in the format specified by the constraint:
            - BaseModel instance if constraint is PydanticModel
            - Dict[str, Any] if constraint is JsonSchema

        Examples
        --------
        Using a Pydantic model constraint:

        ```python
        class Answer(BaseModel):
            reasoning: str
            result: int

        constraint = PydanticModel(model=Answer)
        response = llm.structured_output(
            messages=[Message.from_text("What is 2+2?", role=Role.USER)],
            constraint=constraint,
            model="gpt-4o"
        )
        print(response.reasoning, response.result)
        ```

        Using a JSON schema constraint:

        ```python
        schema = {"type": "object", "properties": {"answer": {"type": "string"}}}
        constraint = JsonSchema(schema=schema)
        response = llm.structured_output(
            messages=[Message.from_text("Hello", role=Role.USER)],
            constraint=constraint,
            model="gpt-4o"
        )
        print(response["answer"])
        ```

        Notes
        -----
        - Utilizes OpenAI's native structured output API with strict schema validation
        - All schemas automatically have additionalProperties set to False
        - Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            extra_body=extra_body,
            response_format=self._get_response_format(constraint),
            **kwargs,
        )
        # Validate required parameters for structured output
        validate_required_params(params, ["messages", "model"])

        response = self.client.chat.completions.parse(**params)
        return self._convert_response(constraint, response.choices[0].message.content)

    async def astructured_output(
        self,
        messages: List[Message],
        constraint: Union[PydanticModel, JsonSchema],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Union[BaseModel, Dict[str, Any]]:
        """
        Asynchronously generate structured output in a specified format using OpenAI's API.

        This is the asynchronous version of structured_output, suitable for concurrent
        processing and non-blocking operations. It leverages OpenAI's structured output
        capabilities to ensure the model response conforms to a specified schema.

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far.
        constraint : Constraint
            The constraint defining the desired output format (PydanticModel or JsonSchema).
        model : str
            Model ID used to generate the response. Structured outputs work best with GPT-4o and later.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        Union[BaseModel, Dict[str, Any]]
            The structured response in the format specified by the constraint:
            - BaseModel instance if constraint is PydanticModel
            - Dict[str, Any] if constraint is JsonSchema

        Examples
        --------
        Using asynchronous structured output:

        ```python
        async def get_structured_response():
            llm = OpenAILlm(api_key="your-key")
            constraint = PydanticModel(model=Answer)
            response = await llm.astructured_output(
                messages=[Message.from_text("Calculate 5+3", role=Role.USER)],
                constraint=constraint,
                model="gpt-4o"
            )
            return response
        ```

        Notes
        -----
        - This is the asynchronous version of structured_output
        - Utilizes OpenAI's native structured output API with strict schema validation
        - Suitable for concurrent processing and high-throughput applications
        - Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            extra_body=extra_body,
            response_format=self._get_response_format(constraint),
            **kwargs,
        )
        # Validate required parameters for structured output
        validate_required_params(params, ["messages", "model"])

        response = await self.async_client.chat.completions.parse(**params)
        return self._convert_response(constraint, response.choices[0].message.content)

    def _add_schema_properties(self, schema: Dict[str, Any]) -> Dict[str, Any]:
        """
        OpenAI requires additionalProperties to be set to False for all objects
        in structured output schemas. See:
        [AdditionalProperties False Must Always Be Set in Objects](https://platform.openai.com/docs/guides/structured-outputs?example=moderation#additionalproperties-false-must-always-be-set-in-objects)
        """
        schema["additionalProperties"] = False
        return schema

    def _get_response_format(self, constraint: Union[PydanticModel, JsonSchema]) -> Dict[str, Any]:
        if isinstance(constraint, PydanticModel):
            result = {
                "type": "json_schema",
                "json_schema": {
                    "schema": self._add_schema_properties(constraint.model.model_json_schema()),
                    "name": constraint.model.__name__,
                    "strict": True,
                },
            }
            return result
        elif isinstance(constraint, JsonSchema):
            return {
                "type": "json_schema",
                "json_schema": {
                    "schema": self._add_schema_properties(constraint.schema_dict),
                    # default name for schema
                    "name": "schema",
                    "strict": True,
                },
            }
        else:
            raise ValueError(f"Unsupported constraint type '{constraint.constraint_type}'. More info about OpenAI structured output: https://platform.openai.com/docs/guides/structured-outputs")

    def _convert_response(
        self,
        constraint: Union[PydanticModel, JsonSchema],
        content: str,
    ) -> Union[BaseModel, Dict[str, Any]]:
        if isinstance(constraint, PydanticModel):
            return constraint.model.model_validate_json(content)
        elif isinstance(constraint, JsonSchema):
            return json.loads(content)
        else:
            raise ValueError(f"Unsupported constraint type '{constraint.constraint_type}'. More info about OpenAI structured output: https://platform.openai.com/docs/guides/structured-outputs")

    def select_tool(
        self,
        messages: List[Message],
        tools: List[Tool],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        parallel_tool_calls: Optional[bool] = None,
        tool_choice: Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam] = None,
        **kwargs,
    ) -> Tuple[List[ToolCall], Optional[str]]:
        """
        Select and invoke tools from a list based on conversation context.

        This method enables the model to intelligently select and call appropriate tools
        from a provided list based on the conversation context. It supports OpenAI's
        function calling capabilities with parallel execution and various control options.

        More OpenAI information: [function-calling](https://platform.openai.com/docs/guides/function-calling)

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far providing context for tool selection.
        tools : List[Tool]
            A list of tools the model may call.
        model : str
            Model ID used to generate the response. Function calling requires compatible models.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        parallel_tool_calls : Optional[bool]
            Whether to enable parallel function calling during tool use.
        tool_choice : Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam]
            Controls which tool, if any, the model may call.
            - `none`: The model will not call any tool and will instead generate a message. This is the default when no tools are provided.
            - `auto`: The model may choose to generate a message or call one or more tools. This is the default when tools are provided.
            - `required`: The model must call one or more tools.
            - To force a specific tool, pass `{"type": "function", "function": {"name": "my_function"}}`.
        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        List[ToolCall]
            List of selected tool calls with their IDs, names, and parsed arguments.
        Union[str, None]
            The content of the message from the model.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            tools=tools,
            tool_choice=tool_choice,
            parallel_tool_calls=parallel_tool_calls,
            extra_body=extra_body,
            **kwargs,
        )
        # Validate required parameters for tool selection
        validate_required_params(params, ["messages", "model"])

        response: ChatCompletion = self.client.chat.completions.create(**params)
        tool_calls = response.choices[0].message.tool_calls
        content = response.choices[0].message.content
        return (self._convert_tool_calls(tool_calls), content)

    async def aselect_tool(
        self,
        messages: List[Message],
        tools: List[Tool],
        model: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        presence_penalty: Optional[float] = None,
        frequency_penalty: Optional[float] = None,
        extra_body: Optional[Dict[str, Any]] = None,
        parallel_tool_calls: Optional[bool] = None,
        tool_choice: Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam] = None,
        **kwargs,
    )-> Tuple[List[ToolCall], Optional[str]]:
        """
        Select and invoke tools from a list based on conversation context.

        This method enables the model to intelligently select and call appropriate tools
        from a provided list based on the conversation context. It supports OpenAI's
        function calling capabilities with parallel execution and various control options.

        More OpenAI information: [function-calling](https://platform.openai.com/docs/guides/function-calling)

        Parameters
        ----------
        messages : List[Message]
            A list of messages comprising the conversation so far providing context for tool selection.
        tools : List[Tool]
            A list of tools the model may call.
        model : str
            Model ID used to generate the response. Function calling requires compatible models.
        temperature : Optional[float]
            What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
            make the output more random, while lower values like 0.2 will make it more
            focused and deterministic.
        top_p : Optional[float]
            An alternative to sampling with temperature, called nucleus sampling, where the
            model considers the results of the tokens with top_p probability mass.
        presence_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on
            whether they appear in the text so far, increasing the model's likelihood to
            talk about new topics.
        frequency_penalty : Optional[float]
            Number between -2.0 and 2.0. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's likelihood to
            repeat the same line verbatim.
        extra_body : Optional[Dict[str, Any]]
            Add additional JSON properties to the request.
        parallel_tool_calls : Optional[bool]
            Whether to enable parallel function calling during tool use.
        tool_choice : Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam]
            Controls which tool, if any, the model may call.
            - `none`: The model will not call any tool and will instead generate a message. This is the default when no tools are provided.
            - `auto`: The model may choose to generate a message or call one or more tools. This is the default when tools are provided.
            - `required`: The model must call one or more tools.
            - To force a specific tool, pass `{"type": "function", "function": {"name": "my_function"}}`.

        **kwargs
            Additional keyword arguments passed to the OpenAI API.

        Returns
        -------
        List[ToolCall]
            List of selected tool calls with their IDs, names, and parsed arguments.
        Union[str, None]
            The content of the message from the model.
        """
        params = self._build_parameters(
            messages=messages,
            model=model,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            tools=tools,
            tool_choice=tool_choice,
            parallel_tool_calls=parallel_tool_calls,
            extra_body=extra_body,
            **kwargs,
        )
        # Validate required parameters for tool selection
        validate_required_params(params, ["messages", "model"])

        response: ChatCompletion = await self.async_client.chat.completions.create(**params)
        tool_calls = response.choices[0].message.tool_calls
        content = response.choices[0].message.content
        return (self._convert_tool_calls(tool_calls), content)

    def _convert_parameters(self, parameters: Dict[str, Any]) -> Dict[str, Any]:
        return {
            "type": "object",
            "properties": parameters.get("properties", {}),
            "required": parameters.get("required", []),
            "additionalProperties": False
        }

    def _convert_tool_to_json(self, tool: Tool) -> Dict[str, Any]:
        return {
            "type": "function",
            "function": {
                "name": tool.name,
                "description": tool.description,
                "parameters": self._convert_parameters(tool.parameters),
            }
        }

    def _convert_tool_calls(self, tool_calls: List[ChatCompletionMessageFunctionToolCall]) -> List[ToolCall]:
        return [] if tool_calls is None else [
            ToolCall(
                id=tool_call.id,
                name=tool_call.function.name,
                arguments=json.loads(tool_call.function.arguments),
            ) for tool_call in tool_calls
        ]

    @override
    def dump_to_dict(self) -> Dict[str, Any]:
        state_dict = {
            "api_base": self.api_base,
            "api_key": self.api_key,
            "timeout": self.timeout,
            "configuration": self.configuration.model_dump(),
        }
        if self.http_client:
            warnings.warn(
                "httpx.Client is not serializable, so it will be set to None in the deserialization.",
                RuntimeWarning,
            )
        if self.http_async_client:
            warnings.warn(
                "httpx.AsyncClient is not serializable, so it will be set to None in the deserialization.",
                RuntimeWarning,
            )
        return state_dict

    @override
    def load_from_dict(self, state_dict: Dict[str, Any]) -> None:
        self.api_base = state_dict["api_base"]
        self.api_key = state_dict["api_key"]
        self.timeout = state_dict["timeout"]
        self.configuration = OpenAIConfiguration(**state_dict.get("configuration", {}))
        self.http_client = None
        self.http_async_client = None

        self.client = OpenAI(
            base_url=self.api_base,
            api_key=self.api_key,
            timeout=self.timeout,
            http_client=self.http_client,
        )
        self.async_client = AsyncOpenAI(
            base_url=self.api_base,
            api_key=self.api_key,
            timeout=self.timeout,
            http_client=self.http_async_client,
        )

chat

chat(
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    tools: Optional[List[Tool]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> Response

Send a synchronous chat completion request to OpenAI.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
model str

Model ID used to generate the response, like gpt-4o or gpt-4.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
max_tokens Optional[int]

The maximum number of tokens that can be generated in the chat completion. This value is now deprecated in favor of max_completion_tokens.

None
stop Optional[List[str]]

Up to 4 sequences where the API will stop generating further tokens. Not supported with latest reasoning models o3 and o3-mini.

None
tools Optional[List[Tool]]

A list of tools to use in the chat completion.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
Response

A response object containing the generated message and raw API response.

Source code in bridgic/llms/openai/_openai_llm.py
def chat(
    self,
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    tools: Optional[List[Tool]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> Response:
    """
    Send a synchronous chat completion request to OpenAI.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    model : str
        Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    max_tokens : Optional[int]
        The maximum number of tokens that can be generated in the chat completion.
        This value is now deprecated in favor of `max_completion_tokens`.
    stop : Optional[List[str]]
        Up to 4 sequences where the API will stop generating further tokens.
        Not supported with latest reasoning models `o3` and `o3-mini`.
    tools : Optional[List[Tool]]
        A list of tools to use in the chat completion.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    Response
        A response object containing the generated message and raw API response.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        max_tokens=max_tokens,
        stop=stop,
        extra_body=extra_body,
        **kwargs,
    )
    # Validate required parameters for non-streaming chat completion
    validate_required_params(params, ["messages", "model"])

    response: ChatCompletion = self.client.chat.completions.create(**params)
    return self._handle_chat_response(response)

stream

stream(
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> StreamResponse

Send a streaming chat completion request to OpenAI.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
model str

Model ID used to generate the response, like gpt-4o or gpt-4.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
max_tokens Optional[int]

The maximum number of tokens that can be generated in the chat completion. This value is now deprecated in favor of max_completion_tokens.

None
stop Optional[List[str]]

Up to 4 sequences where the API will stop generating further tokens. Not supported with latest reasoning models o3 and o3-mini.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Yields:

Type Description
MessageChunk

Individual chunks of the response as they are received from the API. Each chunk contains a delta (partial content) and the raw response.

Notes

This method enables real-time streaming of the model's response, useful for providing incremental updates to users as the response is generated.

Source code in bridgic/llms/openai/_openai_llm.py
def stream(
    self,
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> StreamResponse:
    """
    Send a streaming chat completion request to OpenAI.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    model : str
        Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    max_tokens : Optional[int]
        The maximum number of tokens that can be generated in the chat completion.
        This value is now deprecated in favor of `max_completion_tokens`.
    stop : Optional[List[str]]
        Up to 4 sequences where the API will stop generating further tokens.
        Not supported with latest reasoning models `o3` and `o3-mini`.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Yields
    ------
    MessageChunk
        Individual chunks of the response as they are received from the API.
        Each chunk contains a delta (partial content) and the raw response.

    Notes
    -----
    This method enables real-time streaming of the model's response,
    useful for providing incremental updates to users as the response is generated.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        max_tokens=max_tokens,
        stop=stop,
        extra_body=extra_body,
        stream=True,
        **kwargs,
    )
    # Validate required parameters for streaming chat completion
    validate_required_params(params, ["messages", "model", "stream"])

    response: Stream[ChatCompletionChunk] = self.client.chat.completions.create(**params)
    for chunk in response:
        if chunk.choices and chunk.choices[0].delta.content:
            delta_content = chunk.choices[0].delta.content
            delta_content = delta_content if delta_content else ""
            yield MessageChunk(delta=delta_content, raw=chunk)

achat

async
achat(
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    tools: Optional[List[Tool]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> Response

Send an asynchronous chat completion request to OpenAI.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
model str

Model ID used to generate the response, like gpt-4o or gpt-4.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
max_tokens Optional[int]

The maximum number of tokens that can be generated in the chat completion. This value is now deprecated in favor of max_completion_tokens.

None
stop Optional[List[str]]

Up to 4 sequences where the API will stop generating further tokens. Not supported with latest reasoning models o3 and o3-mini.

None
tools Optional[List[Tool]]

A list of tools to use in the chat completion.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
Response

A response object containing the generated message and raw API response.

Notes

This is the asynchronous version of the chat method, suitable for concurrent processing and non-blocking I/O operations.

Source code in bridgic/llms/openai/_openai_llm.py
async def achat(
    self,
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    tools: Optional[List[Tool]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> Response:
    """
    Send an asynchronous chat completion request to OpenAI.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    model : str
        Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    max_tokens : Optional[int]
        The maximum number of tokens that can be generated in the chat completion.
        This value is now deprecated in favor of `max_completion_tokens`.
    stop : Optional[List[str]]
        Up to 4 sequences where the API will stop generating further tokens.
        Not supported with latest reasoning models `o3` and `o3-mini`.
    tools : Optional[List[Tool]]
        A list of tools to use in the chat completion.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    Response
        A response object containing the generated message and raw API response.

    Notes
    -----
    This is the asynchronous version of the chat method, suitable for
    concurrent processing and non-blocking I/O operations.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        max_tokens=max_tokens,
        stop=stop,
        extra_body=extra_body,
        **kwargs,
    )
    # Validate required parameters for non-streaming chat completion
    validate_required_params(params, ["messages", "model"])

    response = await self.async_client.chat.completions.create(**params)
    return self._handle_chat_response(response)

astream

async
astream(
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> AsyncStreamResponse

Send an asynchronous streaming chat completion request to OpenAI.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
model str

Model ID used to generate the response, like gpt-4o or gpt-4.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
max_tokens Optional[int]

The maximum number of tokens that can be generated in the chat completion. This value is now deprecated in favor of max_completion_tokens.

None
stop Optional[List[str]]

Up to 4 sequences where the API will stop generating further tokens. Not supported with latest reasoning models o3 and o3-mini.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Yields:

Type Description
MessageChunk

Individual chunks of the response as they are received from the API. Each chunk contains a delta (partial content) and the raw response.

Notes

This is the asynchronous version of the stream method, suitable for concurrent processing and non-blocking streaming operations.

Source code in bridgic/llms/openai/_openai_llm.py
async def astream(
    self,
    messages: List[Message],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    max_tokens: Optional[int] = None,
    stop: Optional[List[str]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> AsyncStreamResponse:
    """
    Send an asynchronous streaming chat completion request to OpenAI.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    model : str
        Model ID used to generate the response, like `gpt-4o` or `gpt-4`.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    max_tokens : Optional[int]
        The maximum number of tokens that can be generated in the chat completion.
        This value is now deprecated in favor of `max_completion_tokens`.
    stop : Optional[List[str]]
        Up to 4 sequences where the API will stop generating further tokens.
        Not supported with latest reasoning models `o3` and `o3-mini`.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Yields
    ------
    MessageChunk
        Individual chunks of the response as they are received from the API.
        Each chunk contains a delta (partial content) and the raw response.

    Notes
    -----
    This is the asynchronous version of the stream method, suitable for
    concurrent processing and non-blocking streaming operations.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        max_tokens=max_tokens,
        stop=stop,
        extra_body=extra_body,
        stream=True,
        **kwargs,
    )
    # Validate required parameters for streaming chat completion
    validate_required_params(params, ["messages", "model", "stream"])

    response = await self.async_client.chat.completions.create(**params)
    async for chunk in response:
        if chunk.choices and chunk.choices[0].delta.content:
            delta_content = chunk.choices[0].delta.content
            delta_content = delta_content if delta_content else ""
            yield MessageChunk(delta=delta_content, raw=chunk)

structured_output

structured_output(
    messages: List[Message],
    constraint: Union[PydanticModel, JsonSchema],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> Union[BaseModel, Dict[str, Any]]

Generate structured output in a specified format using OpenAI's structured output API.

This method leverages OpenAI's structured output capabilities to ensure the model response conforms to a specified schema. Recommended for use with GPT-4o and later models.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
constraint Constraint

The constraint defining the desired output format (PydanticModel or JsonSchema).

required
model str

Model ID used to generate the response. Structured outputs work best with GPT-4o and later.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
Union[BaseModel, Dict[str, Any]]

The structured response in the format specified by the constraint: - BaseModel instance if constraint is PydanticModel - Dict[str, Any] if constraint is JsonSchema

Examples:

Using a Pydantic model constraint:

class Answer(BaseModel):
    reasoning: str
    result: int

constraint = PydanticModel(model=Answer)
response = llm.structured_output(
    messages=[Message.from_text("What is 2+2?", role=Role.USER)],
    constraint=constraint,
    model="gpt-4o"
)
print(response.reasoning, response.result)

Using a JSON schema constraint:

1
2
3
4
5
6
7
8
schema = {"type": "object", "properties": {"answer": {"type": "string"}}}
constraint = JsonSchema(schema=schema)
response = llm.structured_output(
    messages=[Message.from_text("Hello", role=Role.USER)],
    constraint=constraint,
    model="gpt-4o"
)
print(response["answer"])
Notes
  • Utilizes OpenAI's native structured output API with strict schema validation
  • All schemas automatically have additionalProperties set to False
  • Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
Source code in bridgic/llms/openai/_openai_llm.py
def structured_output(
    self,
    messages: List[Message],
    constraint: Union[PydanticModel, JsonSchema],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> Union[BaseModel, Dict[str, Any]]:
    """
    Generate structured output in a specified format using OpenAI's structured output API.

    This method leverages OpenAI's structured output capabilities to ensure the model
    response conforms to a specified schema. Recommended for use with GPT-4o and later models.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    constraint : Constraint
        The constraint defining the desired output format (PydanticModel or JsonSchema).
    model : str
        Model ID used to generate the response. Structured outputs work best with GPT-4o and later.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    Union[BaseModel, Dict[str, Any]]
        The structured response in the format specified by the constraint:
        - BaseModel instance if constraint is PydanticModel
        - Dict[str, Any] if constraint is JsonSchema

    Examples
    --------
    Using a Pydantic model constraint:

    ```python
    class Answer(BaseModel):
        reasoning: str
        result: int

    constraint = PydanticModel(model=Answer)
    response = llm.structured_output(
        messages=[Message.from_text("What is 2+2?", role=Role.USER)],
        constraint=constraint,
        model="gpt-4o"
    )
    print(response.reasoning, response.result)
    ```

    Using a JSON schema constraint:

    ```python
    schema = {"type": "object", "properties": {"answer": {"type": "string"}}}
    constraint = JsonSchema(schema=schema)
    response = llm.structured_output(
        messages=[Message.from_text("Hello", role=Role.USER)],
        constraint=constraint,
        model="gpt-4o"
    )
    print(response["answer"])
    ```

    Notes
    -----
    - Utilizes OpenAI's native structured output API with strict schema validation
    - All schemas automatically have additionalProperties set to False
    - Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        extra_body=extra_body,
        response_format=self._get_response_format(constraint),
        **kwargs,
    )
    # Validate required parameters for structured output
    validate_required_params(params, ["messages", "model"])

    response = self.client.chat.completions.parse(**params)
    return self._convert_response(constraint, response.choices[0].message.content)

astructured_output

async
astructured_output(
    messages: List[Message],
    constraint: Union[PydanticModel, JsonSchema],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs
) -> Union[BaseModel, Dict[str, Any]]

Asynchronously generate structured output in a specified format using OpenAI's API.

This is the asynchronous version of structured_output, suitable for concurrent processing and non-blocking operations. It leverages OpenAI's structured output capabilities to ensure the model response conforms to a specified schema.

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far.

required
constraint Constraint

The constraint defining the desired output format (PydanticModel or JsonSchema).

required
model str

Model ID used to generate the response. Structured outputs work best with GPT-4o and later.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
Union[BaseModel, Dict[str, Any]]

The structured response in the format specified by the constraint: - BaseModel instance if constraint is PydanticModel - Dict[str, Any] if constraint is JsonSchema

Examples:

Using asynchronous structured output:

1
2
3
4
5
6
7
8
9
async def get_structured_response():
    llm = OpenAILlm(api_key="your-key")
    constraint = PydanticModel(model=Answer)
    response = await llm.astructured_output(
        messages=[Message.from_text("Calculate 5+3", role=Role.USER)],
        constraint=constraint,
        model="gpt-4o"
    )
    return response
Notes
  • This is the asynchronous version of structured_output
  • Utilizes OpenAI's native structured output API with strict schema validation
  • Suitable for concurrent processing and high-throughput applications
  • Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
Source code in bridgic/llms/openai/_openai_llm.py
async def astructured_output(
    self,
    messages: List[Message],
    constraint: Union[PydanticModel, JsonSchema],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> Union[BaseModel, Dict[str, Any]]:
    """
    Asynchronously generate structured output in a specified format using OpenAI's API.

    This is the asynchronous version of structured_output, suitable for concurrent
    processing and non-blocking operations. It leverages OpenAI's structured output
    capabilities to ensure the model response conforms to a specified schema.

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far.
    constraint : Constraint
        The constraint defining the desired output format (PydanticModel or JsonSchema).
    model : str
        Model ID used to generate the response. Structured outputs work best with GPT-4o and later.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    Union[BaseModel, Dict[str, Any]]
        The structured response in the format specified by the constraint:
        - BaseModel instance if constraint is PydanticModel
        - Dict[str, Any] if constraint is JsonSchema

    Examples
    --------
    Using asynchronous structured output:

    ```python
    async def get_structured_response():
        llm = OpenAILlm(api_key="your-key")
        constraint = PydanticModel(model=Answer)
        response = await llm.astructured_output(
            messages=[Message.from_text("Calculate 5+3", role=Role.USER)],
            constraint=constraint,
            model="gpt-4o"
        )
        return response
    ```

    Notes
    -----
    - This is the asynchronous version of structured_output
    - Utilizes OpenAI's native structured output API with strict schema validation
    - Suitable for concurrent processing and high-throughput applications
    - Best performance achieved with GPT-4o and later models (gpt-4o-mini, gpt-4o-2024-08-06, and later)
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        extra_body=extra_body,
        response_format=self._get_response_format(constraint),
        **kwargs,
    )
    # Validate required parameters for structured output
    validate_required_params(params, ["messages", "model"])

    response = await self.async_client.chat.completions.parse(**params)
    return self._convert_response(constraint, response.choices[0].message.content)

select_tool

select_tool(
    messages: List[Message],
    tools: List[Tool],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    parallel_tool_calls: Optional[bool] = None,
    tool_choice: Union[
        Literal["auto", "required", "none"],
        ChatCompletionNamedToolChoiceParam,
    ] = None,
    **kwargs
) -> Tuple[List[ToolCall], Optional[str]]

Select and invoke tools from a list based on conversation context.

This method enables the model to intelligently select and call appropriate tools from a provided list based on the conversation context. It supports OpenAI's function calling capabilities with parallel execution and various control options.

More OpenAI information: function-calling

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far providing context for tool selection.

required
tools List[Tool]

A list of tools the model may call.

required
model str

Model ID used to generate the response. Function calling requires compatible models.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
parallel_tool_calls Optional[bool]

Whether to enable parallel function calling during tool use.

None
tool_choice Union[Literal['auto', 'required', 'none'], ChatCompletionNamedToolChoiceParam]

Controls which tool, if any, the model may call. - none: The model will not call any tool and will instead generate a message. This is the default when no tools are provided. - auto: The model may choose to generate a message or call one or more tools. This is the default when tools are provided. - required: The model must call one or more tools. - To force a specific tool, pass {"type": "function", "function": {"name": "my_function"}}.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
List[ToolCall]

List of selected tool calls with their IDs, names, and parsed arguments.

Union[str, None]

The content of the message from the model.

Source code in bridgic/llms/openai/_openai_llm.py
def select_tool(
    self,
    messages: List[Message],
    tools: List[Tool],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    parallel_tool_calls: Optional[bool] = None,
    tool_choice: Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam] = None,
    **kwargs,
) -> Tuple[List[ToolCall], Optional[str]]:
    """
    Select and invoke tools from a list based on conversation context.

    This method enables the model to intelligently select and call appropriate tools
    from a provided list based on the conversation context. It supports OpenAI's
    function calling capabilities with parallel execution and various control options.

    More OpenAI information: [function-calling](https://platform.openai.com/docs/guides/function-calling)

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far providing context for tool selection.
    tools : List[Tool]
        A list of tools the model may call.
    model : str
        Model ID used to generate the response. Function calling requires compatible models.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    parallel_tool_calls : Optional[bool]
        Whether to enable parallel function calling during tool use.
    tool_choice : Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam]
        Controls which tool, if any, the model may call.
        - `none`: The model will not call any tool and will instead generate a message. This is the default when no tools are provided.
        - `auto`: The model may choose to generate a message or call one or more tools. This is the default when tools are provided.
        - `required`: The model must call one or more tools.
        - To force a specific tool, pass `{"type": "function", "function": {"name": "my_function"}}`.
    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    List[ToolCall]
        List of selected tool calls with their IDs, names, and parsed arguments.
    Union[str, None]
        The content of the message from the model.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        tools=tools,
        tool_choice=tool_choice,
        parallel_tool_calls=parallel_tool_calls,
        extra_body=extra_body,
        **kwargs,
    )
    # Validate required parameters for tool selection
    validate_required_params(params, ["messages", "model"])

    response: ChatCompletion = self.client.chat.completions.create(**params)
    tool_calls = response.choices[0].message.tool_calls
    content = response.choices[0].message.content
    return (self._convert_tool_calls(tool_calls), content)

aselect_tool

async
aselect_tool(
    messages: List[Message],
    tools: List[Tool],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    parallel_tool_calls: Optional[bool] = None,
    tool_choice: Union[
        Literal["auto", "required", "none"],
        ChatCompletionNamedToolChoiceParam,
    ] = None,
    **kwargs
) -> Tuple[List[ToolCall], Optional[str]]

Select and invoke tools from a list based on conversation context.

This method enables the model to intelligently select and call appropriate tools from a provided list based on the conversation context. It supports OpenAI's function calling capabilities with parallel execution and various control options.

More OpenAI information: function-calling

Parameters:

Name Type Description Default
messages List[Message]

A list of messages comprising the conversation so far providing context for tool selection.

required
tools List[Tool]

A list of tools the model may call.

required
model str

Model ID used to generate the response. Function calling requires compatible models.

None
temperature Optional[float]

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

None
top_p Optional[float]

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.

None
presence_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

None
frequency_penalty Optional[float]

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

None
extra_body Optional[Dict[str, Any]]

Add additional JSON properties to the request.

None
parallel_tool_calls Optional[bool]

Whether to enable parallel function calling during tool use.

None
tool_choice Union[Literal['auto', 'required', 'none'], ChatCompletionNamedToolChoiceParam]

Controls which tool, if any, the model may call. - none: The model will not call any tool and will instead generate a message. This is the default when no tools are provided. - auto: The model may choose to generate a message or call one or more tools. This is the default when tools are provided. - required: The model must call one or more tools. - To force a specific tool, pass {"type": "function", "function": {"name": "my_function"}}.

None
**kwargs

Additional keyword arguments passed to the OpenAI API.

{}

Returns:

Type Description
List[ToolCall]

List of selected tool calls with their IDs, names, and parsed arguments.

Union[str, None]

The content of the message from the model.

Source code in bridgic/llms/openai/_openai_llm.py
async def aselect_tool(
    self,
    messages: List[Message],
    tools: List[Tool],
    model: Optional[str] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    parallel_tool_calls: Optional[bool] = None,
    tool_choice: Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam] = None,
    **kwargs,
)-> Tuple[List[ToolCall], Optional[str]]:
    """
    Select and invoke tools from a list based on conversation context.

    This method enables the model to intelligently select and call appropriate tools
    from a provided list based on the conversation context. It supports OpenAI's
    function calling capabilities with parallel execution and various control options.

    More OpenAI information: [function-calling](https://platform.openai.com/docs/guides/function-calling)

    Parameters
    ----------
    messages : List[Message]
        A list of messages comprising the conversation so far providing context for tool selection.
    tools : List[Tool]
        A list of tools the model may call.
    model : str
        Model ID used to generate the response. Function calling requires compatible models.
    temperature : Optional[float]
        What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
        make the output more random, while lower values like 0.2 will make it more
        focused and deterministic.
    top_p : Optional[float]
        An alternative to sampling with temperature, called nucleus sampling, where the
        model considers the results of the tokens with top_p probability mass.
    presence_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on
        whether they appear in the text so far, increasing the model's likelihood to
        talk about new topics.
    frequency_penalty : Optional[float]
        Number between -2.0 and 2.0. Positive values penalize new tokens based on their
        existing frequency in the text so far, decreasing the model's likelihood to
        repeat the same line verbatim.
    extra_body : Optional[Dict[str, Any]]
        Add additional JSON properties to the request.
    parallel_tool_calls : Optional[bool]
        Whether to enable parallel function calling during tool use.
    tool_choice : Union[Literal["auto", "required", "none"], ChatCompletionNamedToolChoiceParam]
        Controls which tool, if any, the model may call.
        - `none`: The model will not call any tool and will instead generate a message. This is the default when no tools are provided.
        - `auto`: The model may choose to generate a message or call one or more tools. This is the default when tools are provided.
        - `required`: The model must call one or more tools.
        - To force a specific tool, pass `{"type": "function", "function": {"name": "my_function"}}`.

    **kwargs
        Additional keyword arguments passed to the OpenAI API.

    Returns
    -------
    List[ToolCall]
        List of selected tool calls with their IDs, names, and parsed arguments.
    Union[str, None]
        The content of the message from the model.
    """
    params = self._build_parameters(
        messages=messages,
        model=model,
        temperature=temperature,
        top_p=top_p,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        tools=tools,
        tool_choice=tool_choice,
        parallel_tool_calls=parallel_tool_calls,
        extra_body=extra_body,
        **kwargs,
    )
    # Validate required parameters for tool selection
    validate_required_params(params, ["messages", "model"])

    response: ChatCompletion = await self.async_client.chat.completions.create(**params)
    tool_calls = response.choices[0].message.tool_calls
    content = response.choices[0].message.content
    return (self._convert_tool_calls(tool_calls), content)